

Содержание

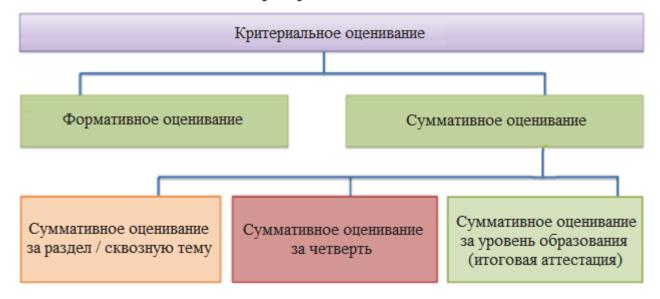
1	Цель оценивания	3
1.1	Взаимосвязь с учебной программой	3
1.2	Взаимосвязь с системой критериального оценивания	3
2	Описание экзаменационной работы	4
2.1	Задачи оценивания	4
2.2	Распределение баллов	5
2.3	Язык сдачи экзамена	5
2.4	Использование калькулятора	5
3	Управление процессом проведения экзамена	5
4	Процесс выставления баллов и оценки за экзаменационную работу	6
5	Описание оценок	6
6	Примеры вопросов и схем выставления баллов	7

1 Цель оценивания

Определение степени освоения обучающимися объёма учебной программы по предмету «Химия» в соответствии с государственным общеобязательным стандартом основного среднего образования (далее – Γ OCO).

1.1 Взаимосвязь с учебной программой

Итоговая аттестация обучающихся охватывает содержание типовой учебной программы по предмету «Химия» для 10-11 классов естественно-математического направления уровня общего среднего образования по обновлённому содержанию.


Итоговая аттестация учащихся, обучающихся по типовой учебной программе *с сокращённой учебной нагрузкой*, охватывает содержание типовой учебной программы (с сокращённой учебной нагрузкой) по предмету «Химия» для 10-11 классов естественноматематического направления уровня общего среднего образования.

Уровень знаний и умений, а также навыки обучающихся определяются ожидаемыми результатами ГОСО.

1.2 Взаимосвязь с системой критериального оценивания

Итоговая аттестация обучающихся является частью системы критериального оценивания, которая также включает формативное и суммативное оценивание.

Система критериального оценивания

2 Описание экзаменационной работы

Время выполнения	3 часа
Экзаменационная работа состоит из 3 частей.	

Часть А содержит 20 заданий с выбором одного правильного ответа из четырех предложенных. Задания оцениваются в 1 балл.

Часть В содержит 4-5 структурированных заданий. Задания оцениваются в 5-10 баллов.

Часть С содержит 1 структурированное задание в виде теоретического миниисследования (интерпретация готовых результатов, графиков, таблиц и т.д.). Задание оценивается в 5-10 баллов.

Разрешается использовать периодическую таблицу и калькулятор.

Максимальный балл	60 баллов
-------------------	-----------

2.1 Задачи оценивания

301	Знание и понимание
	Обучающиеся должны знать и понимать:
	• научные явления, факты, законы, определения, концептуальные понятия и
	теории
	• научную лексику, терминологию, условные обозначения (включая символы, величины и единицы)
	• использование научных приборов и оборудования, включая правила эксплуатации и безопасности
	• научные обозначения и их способы определения
	• применение науки и технологии с учётом социальных, экономических и экологических последствий
	• способы предоставления обоснованных объяснений явлениям, системам и взаимосвязям.
3O2	Обработка, применение и оценивание информации
	Обучающиеся должны уметь:
	• находить, выбирать, систематизировать информацию из различных
	источников
	• обрабатывать информацию и отделять несущественную информацию
	• работать с числовыми и другими данными, переводить информацию из одной формы в другую
	• анализировать и оценивать информацию при определении образцов, описывать ход работы и делать выводы
	• предсказывать и выдвигать гипотезы
	• находить аргументы и доказательства в поддержку гипотез
	• применять знания и принципы в новых ситуациях
	• оценивать информацию и гипотезы.
3O3	Практические и экспериментальные навыки
	Учащиеся должны уметь:
	• интерпретировать и проводить оценку наблюдений и экспериментальных данных
	• определять проблему; разрабатывать и планировать исследования; проводить
	оценку методов и методик; предлагать возможные способы улучшения
	• вести учёт наблюдений, измерений, методов, методик и единиц с
	необходимой точностью.

2.2 Распределение баллов

Распределение баллов по задачам оценивания представлено в таблице.

Задачи оценивания	Балл
3О1 Знание и понимание	20-25
3О2 Обработка, применение и оценивание информации	30-35
3О3 Практические и экспериментальные навыки	5-10
Итого	60

Распределение баллов по разделам учебной программы (10-11 классы) представлены в таблице.

Частицы вещества	Закономерности химических реакций	Энергетика в химии	Химия вокруг нас	Химия и жизнь
6% - 14%	23% - 31%	10% - 18%	32% - 40%	9% - 17%
(4-8 баллов)	(14-18 баллов)	(6-10 баллов)	(20-24 баллов)	(6-10 баллов)

2.3 Язык сдачи экзамена

Экзамен сдаётся на языке обучения.

2.4 Использование калькулятора

Калькулятор должен:

- быть подходящего размера для использования;
- работать на обыкновенных или солнечных батареях;
- быть без крышек, футляров и покрытий с напечатанными инструкциями или формулами.

Калькулятор не должен содержать следующие функции:

- алгебраическое преобразование;
- дифференцирование и интегрирование;
- связь с другими устройствами и Интернетом.

Калькулятор не должен содержать легко извлекаемую информацию, в том числе:

- базу данных;
- словари;
- математические формулы;
- тексты.

3 Управление процессом проведения экзамена

Экзамены проводятся согласно Типовым правилам проведения текущего контроля успеваемости, промежуточной и итоговой аттестации обучающихся в организациях образования, реализующих общеобразовательные учебные программы начального, основного среднего, общего среднего образования, утверждённым приказом Министра образования и науки Республики Казахстан «Об утверждении Типовых правил проведения текущего контроля успеваемости, промежуточной и итоговой аттестации обучающихся для организаций среднего, технического и профессионального, послесреднего образования» от 18 марта 2008 года № 125, а также в соответствии с Инструкцией по организации и проведению итоговой аттестации.

4 Процесс выставления баллов и оценки за экзаменационную работу

Процесс выставления баллов за экзаменационную работу осуществляется аттестационной комиссией на основании предоставленной схемы выставления баллов.

Выставленные баллы обучающихся переводятся в оценку согласно шкале перевода баллов в оценки.

Баллы экзаменационной работы	Процентное содержание баллов, %	Оценка
0-23	0-39	2 (неудовлетворительно)
24-38	40-64	3 (удовлетворительно)
39-50	65-84	4 (хорошо)
51-60	85-100	5 (отлично)

5 Описание оценок

Описание оценок даётся для общего представления стандартов возможных достижений обучающихся, за которые присуждается определенная оценка. На практике присуждённая оценка зависит от степени соответствия работ обучающихся задачам оценивания.

Оценка	Описание
5	Обучающийся демонстрирует глубокое знание предмета, чёткое понимание основных принципов и методов предмета. Ответы обучающегося хорошо сформулированы, достоверны и развёрнуты, вычисления выполнены точно и правильно. Обучающийся умеет: • связывать факты с принципами и теорией, или наоборот; • собирать и использовать информацию из разных источников и представлять её в ясной логической форме; • решать ситуационные задачи, включающие множество переменных; • обрабатывать информацию из различных источников для моделирования и решения проблем;
4	Обучающийся демонстрирует хорошее знание во многих областях предмета с некоторыми упущениями, понимание основных принципов и методов предмета. Ответы обучающегося чаще всего ясно сформулированы и обоснованы; вычисления также приводят к правильному ответу. Обучающийся умеет: • связывать факты в ситуациях, которые не приведены в учебной программе; • собирать и использовать информацию из разных источников и представлять в ясной логической форме; • решать ситуационные задачи, включающих в себя ограниченное количество переменных;
3	Обучающийся демонстрирует базовые знания предмета с важными упущениями и недостаточно понимает основные принципы и методы

предмета. Ответы обучающегося могут содержать полезную информацию, но могут пересекаться с ненужной информацией. Обучающийся правильно проводит простые вычисления, но в более сложных вычислениях допускает ошибки.

Обучающийся умеет:

воспроизводить факты, которые приведены в учебной программе;
решать задачу, включающую одно действие;
собирать и представлять часть информации с данного источника;
решать задачу одним или более способами;
определять модель или проблему, где требуется минимальная

2 У обучающегося недостаточные базовые знания по предмету.

6 Примеры вопросов и схем выставления баллов

обработка данных;

В данном разделе представлены некоторые виды заданий, используемые на итоговой аттестации.

В конце каждого задания в квадратных скобках [] указывается начисляемый за него балл.

В качестве руководства предоставляются схемы выставления баллов, в которых указывается количество баллов, присваиваемых за каждое задание.

Часть А

- 1 Какое утверждение об ионе циркония, $\frac{90}{40}$ Zr³⁺, является верным?
 - **A** В этом ионе 37 электронов.
 - В В этом ионе 43 электронов.
 - С В этом ионе 50 нуклонов.
 - **D** В этом ионе 50 протонов.

[1]

- 2 Почему аминокислоты являются амфотерными соединениями?
 - А Содержат амино- и карбоксильные группы.
 - В Реагируют с водой.
 - С Образуют сложные эфиры.
 - **D** Содержат карбоксильные группы.

3 Какая строка таблицы является верной?

	сила восстановителей	обоснование
A	ионы С l - > ионы Br - > ионы I	ионы ${ m I}^{ ext{-}}$ могут восстанавливать ионы ${ m C} l$ $^{ ext{-}}$ в водном растворе
В	ионы С l - > ионы $\mathrm{Br}^{ au}$ > ионы $\mathrm{I}^{ au}$	анионы большего размера теряют электроны легче, чем анионы меньшего размера
С	ионы $I^- >$ ионы $Br^- >$ ионы Cl^-	ионы I^- могут восстанавливать ионы Cl^- в водном растворе
D	ионы $I^- >$ ионы $Br^- >$ ионы Cl^-	анионы большего размера теряют электроны легче, чем анионы меньшего размера

[1]

4 Ди(би)хромат - ионы, Cr_2O_7 ²⁻(водн.), в подкисленном растворе окисляют Sn^{2+} (водн.) - ионы до ионов Sn^{4+} (водн.). Хром в этой реакции восстанавливается до Cr^{3+} (водн.).

Каково ионное уравнение этой окислительно-восстановительной реакции?

A
$$Cr_2O^{2-} + Sn^{2+} + 14H^+ \rightarrow Cr^{3+} + Sn^{4+} + 7H O$$

B
$$Cr_2O_7^{2-} + 3Sn^{2+} + 14H^+ \rightarrow 2Cr^{3+} + 3Sn^{4+} + 7H_2O_1^{2-}$$

C
$$Cr_2O^{2-} + 6Sn^{2+} + 14H^+ \rightarrow 2Cr^{3+} + 6Sn^{4+} + 7HO$$

D
$$2Cr_2O^{2-} + 3Sn^{2+} + 28H^+ \rightarrow 4Cr^{3+} + 3Sn^{4+} + 14HO$$

[1]

5 Медь образует комплекс с этан-1.2-диамином, NH₂CH₂CH₂NH₂. Формула этого комплекса [Cu(NH₂CH₂NH₂)₃]²⁺. В этом комплексе все шесть неподеленных пар электронов от лигандов связываются с ионом меди. Эти шесть неподеленных пар расположены октаэдрически вокруг иона меди.

К какому выводу можно прийти, исходя только из этой информации?

- **А** Этан-1,2-диамин бидентатная лиганда.
- **В** Комплекс $[Cu(NH_2CH_2CH_2NH_2)_3]^{2+}$ нерастворим в воде.
- С Комплекс $[Cu(NH_2CH_2CH_2NH_2)_3]^{2+}$ бесцветный в водном растворе.
- **D** Комплекс $[Cu(NH_2CH_2NH_2)_3]^{2+}$ менее устойчив, чем комплекс $[Cu(H_2O)_6]^{2+}$.

6 В процессе Габера используется температура 450 °C.

В каком утверждении описано, почему используется эта температура?

- А При 450 °С достигается оптимальный выход аммиака при оптимальной скорости.
- **В** При 450 °С энергозатраты сохраняются более низкими.
- С При 450 °С достигается приемлемый выход аммиака при приемлемой скорости.
- **D** При 450 °C достигается максимально возможный выход аммиака при равновесии.

[1]

7 Во всех четырех утверждениях правильно описано использование катализатора.

Какой из катализаторов является гомогенным?

- **А** В процессе Габера катализатором является железо.
- В Никель катализирует реакцию между этеном и водородом.
- С В Контактном способе катализатором является пентаоксид диванадия
- **D** Ионы Fe^{2+} катализируют реакцию между ионами I^- и ионами S_2O_8 $^{2-}$ в водном растворе.

[1]

8 В каком уравнении правильно представлена стадия фотохимического хлорирования этана?

- A $C_2H_6 \rightarrow C_2H_5 \bullet + H \bullet$
- **B** $C_2H_6 + Cl \cdot \rightarrow C_2H_5Cl + \cdot$
- C $C_2H_5Cl + H_{\bullet} \rightarrow C_2H_4Cl_{\bullet}+H_2$
- **D** $C_2H_6 + Cl \cdot \rightarrow C_2H_5 \cdot +HCl$

[1]

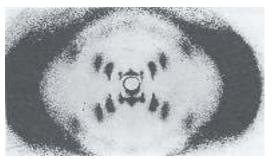
9 Большой образец соединения CH₃CHCHCH₃ тестируется малым количеством бромной воды.

В какой строке таблицы правильно описан результат этого теста и вывод?

	результат теста	вывод
A	бромная вода обесцвечивается	СН3СНСНСН3 - это насыщенное
Λ	оромпал вода оосецве-иваетел	соединение
В	бромная вода обесцвечивается	СН ₃ СНСНСН ₃ - это ненасыщенное
		соединение
С бромная вода не обесцвечивае	бромная вола на обеспренирается	СН3СНСНСН3 - это насыщенное
	оромная вода не оосецвечивается	соединение
D	бромная вода не обесцвечивается	СН ₃ СНСНСН ₃ - это ненасыщенное
		соединение

10	Nar	сое название и структурная формула являются правильными:	
	A	СН ₃ СН ₂ СНО - это пропанон	
	В	С2Н5СОС2Н5 - это бутанон	
	C	(СН3)2СНСН2СНО - это 3-метилбутаналь	
	D	С ₂ Н ₅ СОСН ₃ - это бутаналь-3	
11		аком утверждении правильно описан двухэтапный синтез, на первом этапе орого получают нитробензол?	[1]
	A	получение аспирина из бензола	
	В	получение хлорбензола из бензола	
	C	получение фенола из бензола	
	D	получение фениламина из бензола	F13
12	Me	жду какими соединениями может образоваться пептидная связь?	[1]
	A	этанола и этиламина	
	В	уксусного альдегида и этанола	
	C	глицина и анилина	
	D	глицина и аланина	[1]
13	Прі	и ответе на этот вопрос необходимо учитывать стереоизомерию.	[+]
		олько изомеров образуется, когда бутанол-2 подвергают обработке избытком центрированной серной кислоты?	
	A	2	
	В	3	
	C	4	
	D	5	-
			[1]

14 Топливный насос подаёт биоэтанол. Этот этанол получают путём брожения растительных отходов. Завод производит 1260 тонн глюкозы, C₆H₁₂O₆, из отходов растений.



Чему равна максимальная масса этанола от теоретически возможного, которую можно получить путем брожения из данной массы глюкозы?

- А 322 тонны
- **В** 644 тонны
- С 852 тонны
- **D** 1260 тонн

[1]

15 ДНК состоит из двух полимерных цепей, закрученных в двойную спираль. Розалиндой Франклин и Рэймондом Гослингом получено важное доказательство двойной спирали с использованием рентгеновской кристаллографии.

Изображение рентгеновской кристаллографии Франклин и Гослинга, полученной из ДНК

Субъединицы ДНК состоят из углеводов (сахара), фосфатной группы и четырёх типов органических оснований. Углевод (сахар) и фосфатная группа образуют скелет каждой полимерной цепи ДНК.

Какое описание местоположения органических оснований является правильным?

- А с внешней стороны двойной спирали присоединён к каждому остатку углевода
- В с внутренней стороны двойной спирали присоединён к каждому остатку фосфата
- С с внутренней стороны двойной спирали присоединён к каждому остатку углевода
- **D** с внешней стороны двойной спирали присоединён к каждому остатку фосфата

Для каждого вопроса правильным может быть одно или более из трех утверждений, пронумерованных от 1 до 3.

Решите, верно ли каждое из утверждений (для удобства ставьте галочки напротив утверждений, которые Вы считаете правильными).

Необходимо выбрать ответ от **A** до **D** на основе данной таблицы

A	В	С	D
1, 2 и 3	только 1 и 2	только 2 и 3	только 1
правильные.	правильные.	правильные.	правильный.

Никакие другие комбинации утверждений не могут быть использованы в качестве правильного ответа.

- **16** Какое(ие) утверждение(я) помогает(ют) объяснить, почему повышение уровня углекислого газа в атмосфере может вызвать глобальное потепление?
 - 1 Молекулы углекислого газа могут поглощать инфракрасное излучение.
 - 2 Связи С=О в молекуле углекислого газа полярные.
 - 3 Плотность углекислого газа больше средней плотности воздуха.

[1]

- 17 Какое(ие) утверждение(я) правильное(ые)?
 - 1 Бром более электроположительный, чем йод.
 - 2 Натрий более электроположительный, чем магний.
 - 3 Углерод более электроотрицательный, чем кремний.

[1]

- 18 Какое(ие) утверждение(я) правильное(ые)?
 - 1 Раствор, содержащий в $100 \text{ см}^3 5.145 \text{ г NaBr} (M_r=102.9)$, имеет концентрацию $0.500 \text{ моль дм}^{-3}$.
 - **2** Раствор, содержащий в 500 см³ 34.0 г NH₃ ($M_{\rm r}$ =17.0), имеет концентрацию 4.00 моль дм⁻³.
 - **3** Раствор, содержащий в 250 см 3 7.98 г CuSO₄ (M_r =159.6), имеет концентрацию 0.200 моль дм $^{-3}$.

19 Последовательность атомов –O(CH₂)₅COO(CH₂)₅COO(CH₂)₅CO– повторяется по всей длине полимерной цепи.

Какой мономер или мономеры можно использовать для получения этого полимера?

- 1 HOOC(CH₂)₅COOH и HOCH₂(CH₂)₃CH₂OH
- 2 HOCH₂(CH₂)₄COOH
- 3 $HOCH_2(CH_2)_4COCl$

[1]

- **20 Z** это соединение углерода, водорода и кислорода. Были протестированы отдельные образцы **Z** и записаны следующие наблюдения.
 - Когда металлический натрий добавили к Z, наблюдалось выделение пузырьков газа.
 - Когда горячий подкислённый $K_2Cr_2O_7$ добавили к **Z**, изменение цвета не наблюдалось.
 - Когда **Z** нагрели с реагентом Толленса, реакция серебряного зеркала не наблюдалась.

Чем могло бы являться Z?

- 1 (CH₃)₃COH
- 2 (CH₃)₃COH
- 3 CH₃COCOOH

[1]

[Всего 20]

Часть В

21	(a)	При электролизе расплава оксида алюминия на аноде выделяется кисло Опишите тест для обнаружения кислорода.	род.
			[1]
	(b)) Хром получают при взаимодействии алюминия с оксидом хрома(III).	
		Докажите, что эта реакция относится к окислительно-восстановительно	ой.
			[2]
	(c)	(i) При гидролизе карбида алюминия образуется метан. Изобразите 3D-структуру молекулы метана.	
		(**) O	[2]
		(ii) Одним из производных метана является метановая кислота. (являться и кислотой, и восстановителем.	Эна может
		Напишите одно сбалансированное уравнение реакции, в котор кислота ведет себя как кислота.	ом метановая
			[2]
			[Bcero 7]
22	(a)	Ниже дана схема получения серной кислоты контактным способом.	
			=
		(і) Укажите, какой процесс протекает в части В.	
			[2]

		(11)	реакции?
			[1]
		(iii)	Перечислите не менее двух принципов промышленного производства серной кислоты.
			[2]
		(iv)	Рассчитайте рН 0,1М раствора серной кислоты.
			[2]
	(b)	_	еходные металлы являются хорошими катализаторами во многих изводственных процессах.
		(i)	Дайте определение понятию «катализ».
			[2]
		(ii)	Известны два наиболее распространённых сплава железа: чугун и сталь.
			Напишите почему для изготовления медицинских инструментов используется сталь, а не чугун?
			[1]
			[Bcero 10]
23	(a)	(i)	$CuCl_2$ и $Cu(OH)_2$ являются твердыми веществами. Они по-разному ведут себя в воде. Объясните, почему.
			[2]

	(ii) Назовите вид химической связи в молекуле $CuCl_2$ и объясните механизм образования.
	[2]
(b)	Определите продукты, образующиеся на катоде и аноде при электролизе водного раствора $\mathrm{CuC} l_2$.
	[2]
(c)	Объясните, почему твердый хлорид меди(II) не проводит электрический ток, а его расплав проводит электрический ток.
	[2]
	[2]

24 (а) Гидрирование является одним из важных промышленных процессов.	
При взаимодействии водорода с оксидом углерода(II) образуется метанол реакции	по
$CO_{(r)} + 2H_{2(r)} \leftrightarrow CH_3OH_{(r)} + Q$	
Укажите, как будут влиять на выход продукта реакции температура и давлени	e.
	.
	[2]
(b) Изобразите структурную формулу метанола и укажите типы связей между атом в её молекуле.	ами
	[21
	[3]
(с) Напишите реакцию взаимодействия метанола с пропановой кислотой.	
	[1]
(d) (i) Этанол не является таким ядовитым, как метанол, но его употребление в и алкогольных напитков угрожает здоровью человека. Приведите с медицино точки зрения последствия употребления алкоголя.	
	[1]
(d) (ii) К биохимическим способам получения спиртов относится спирто сбраживание природного сырья, содержащего углеводы.	овое
Напишите уравнение реакции спиртового брожения глюкозы.	
	[2]
[Bcen	ro 9]

Часть С Секция С Научное исследование

(b) Напишите какие измерения ей следует провести для получения необходимых данных. [1] (c) Покажите, как можно убедиться в достоверности отобранных данных. [1] (d) В процессе эксперимента при сторании жидкости массой 11.2 г образовалась вода массой 14.4 г (М;=18,0) и 35.2 г углекиелого газа (М;=44,0). Плотность его паров по водороду составляет 43. Используя эти данные, определите эмпирическую формулу углеводорода.	25	угл	мик хочет найти эмпирическую формулу жидкости. По образцу это чистый еводород – соединение углерода и водорода. Она собирается поджечь немного цкости и определить массу полученных воды и углекислого газа.
(b) Напишите какие измерения ей следует провести для получения необходимых данных. [1] (c) Покажите, как можно убедиться в достоверности отобранных данных. [1] (d) В процессе эксперимента при сгорании жидкости массой 11.2 г образовалась вода массой 14.4 г (М _г =18,0) и 35.2 г углекислого газа (М _г =44,0). Плотность его паров по водороду составляет 43. Используя эти данные, определите эмпирическую формулу углеводорода.		(a)	Из Вашей схемы должно быть понятно, как и где будет собрана вода и углекислый
(b) Напишите какие измерения ей следует провести для получения необходимых данных. [1] (c) Покажите, как можно убедиться в достоверности отобранных данных. [1] (d) В процессе эксперимента при сгорании жидкости массой 11.2 г образовалась вода массой 14.4 г (М _г =18,0) и 35.2 г углекислого газа (М _г =44,0). Плотность его паров по водороду составляет 43. Используя эти данные, определите эмпирическую формулу углеводорода.			
(b) Напишите какие измерения ей следует провести для получения необходимых данных. [1] (c) Покажите, как можно убедиться в достоверности отобранных данных. [1] (d) В процессе эксперимента при сгорании жидкости массой 11.2 г образовалась вода массой 14.4 г (М _г =18,0) и 35.2 г углекислого газа (М _г =44,0). Плотность его паров по водороду составляет 43. Используя эти данные, определите эмпирическую формулу углеводорода.			
(c) Покажите, как можно убедиться в достоверности отобранных данных. [1] (d) В процессе эксперимента при сгорании жидкости массой 11.2 г образовалась вода массой 14.4 г (М.=18,0) и 35.2 г углекислого газа (М.=44,0). Плотность его паров по водороду составляет 43. Используя эти данные, определите эмпирическую формулу углеводорода.			[3]
(c) Покажите, как можно убедиться в достоверности отобранных данных. [1] (d) В процессе эксперимента при сгорании жидкости массой 11.2 г образовалась вода массой 14.4 г (М _г =18,0) и 35.2 г углекислого газа (М _г =44,0). Плотность его паров по водороду составляет 43. Используя эти данные, определите эмпирическую формулу углеводорода.		(b)	• • • • • • • • • • • • • • • • • • • •
(d) В процессе эксперимента при сгорании жидкости массой 11.2 г образовалась вода массой 14.4 г (М=18,0) и 35.2 г углекислого газа (М=44,0). Плотность его паров по водороду составляет 43. Используя эти данные, определите эмпирическую формулу углеводорода.			[1]
(d) В процессе эксперимента при сгорании жидкости массой 11.2 г образовалась вода массой 14.4 г (M _r =18,0) и 35.2 г углекислого газа (M _r =44,0). Плотность его паров по водороду составляет 43. Используя эти данные, определите эмпирическую формулу углеводорода.		(c)	Покажите, как можно убедиться в достоверности отобранных данных.
массой 14.4 г (М _г =18,0) и 35.2 г углекислого газа (М _г =44,0). Плотность его паров по водороду составляет 43. Используя эти данные, определите эмпирическую формулу углеводорода.			[1]
[1]		(d)	массой 14.4 г (M_r =18,0) и 35.2 г углекислого газа (M_r =44,0). Плотность его паров по
			Используя эти данные, определите эмпирическую формулу углеводорода.
Штото С			[1]
[ИТОГО: О			[Итого: 6]

Схема выставления баллов

Часть А

№	Ответ	Балл
1	A	1
2	A	1
3	D	1
4	В	1
5	A	1
6	С	1
7	D	1
8	D	1
9	В	1
10	С	1
11	D	1
12	D	1
13	С	1
14	В	1
15	С	1
16	В	1
17	С	1
18	A	1
19	С	1
20	С	1

Часть В

Nº	Ответ	Балл	Дополнительные указания
21 (a)	возгорание тлеющей лучинки	[1]	J.1103011111
(b)	$Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr$ $Cr^{+3} + 3e \rightarrow Cr^0$ - окислитель	1	за указание изменения степеней окисления
	$Al \rightarrow Al^{+3} + 3e$ / $Al - 3e \rightarrow Al^{+3}$ — восстановитель	1	за словесное указание окислителя
	Cr восстанавливается/окислитель Al окисляется/восстановитель	[2]	и восстановителя
(c)(i)	тетраэдрическое строение н н н н	[2]	1 балл за геометрическую форму молекулы 1 балл за контурные линии
(c)(ii)		[2]	принимается любой другой активный металл 1 за написание реакции 1 балл за правильную балансировку
22 (a)(i)	окисление SO ₂ в SO ₃ /диоксида серы в триоксид серы/оксида серы (IV) в оксид серы (VI)	1	
	процесс обратимый/ $2SO_2 + O_2 \leftrightarrow 2SO_3$ оптимальные условия: $400\text{-}450^{\circ}\text{C}$, 2 атм., кат V_2O_5	1 [2]	
(a)(ii)	Увеличение давления	[1]	
(a)(iii)	Любые два из: непрерывности	1	
	автоматизации	1	
	утилизации отходов/безотходная технология теплообмена	1	
	циркуляции	1	
	оптимального использования	1	
	сырья/оптимальные условия протекания реакции	[2]	
(a)(iv)	$PH = - \lg[H^+]$	1	
	$H_2SO_4 = 2 H^+ + SO_4^{2-}$		

	$[H^+] = 2*C(H_2SO_4) = 2*0,1 = 0,2 M$	1	
	$pH = - lg[H^+] = - lg0.2 = 0.7$ pH = 0.7	[2]	
(b) (i)	Катализ – процесс ускорения химической	1	не принимается
	реакции в присутствии катализаторов.		изменение скорости
	Гомогенный и гетерогенный	1	реакции
(L)(!!)		[2]	
(b)(ii)	<u>чугун</u> более хрупкий/тяжелый/подвергается коррозии.		
	<u>сталь</u> прочнее/тверже /коррозионно устойчивее	[1]	
23 (a)(i)	хлорид меди диссоциирует в водных		принимается
	растворах на ионы (электролит):		оба ионные
	$CuCl_2 \rightarrow Cu^{2+} + 2 Cl^{-}$	1	соединения с
	Cy(OII), we were expressed a power and a support		объяснением.
	Cu(OH) ₂ не диссоциирует в водном растворе на ионы (неэлектролит).		электростатическое притяжение между
	na nonia (nesseriposini).		ионами Cu ²⁺ и OH ⁻
	Хлорид меди – растворим в воде.		сильнее, чем
	Гидроксид меди (2+) – не растворим в воде.	1	межмолекулярное
		1	притяжение между
			полярными
		[2]	молекулами воды к ионам Cu ²⁺ и OH ⁻
			Honam Cu II OII
(a)(ii)	ионная	1	
	металл отдает электроны, а неметалл их	1	
	забирает / низкая электроотрицательность		
	металла и более высокая		
<i>a</i> >	электроотрицательность хлора	[2]	
(b)	Катод: Cu - медь	1	принимается названия без
	Анод: Cl2 - хлор	1	написания уравнений
	7 нод. 012 жлор	[2]	панисания уравнении
(c)	в твердом состоянии CuCl2 не содержит	1	
	свободно движущихся ионов/находятся		
	связанными в узлах кристаллической	1	
	рещетки.	1 (2)	
	в расплаве CuCl ₂ содержатся свободно движущиеся ионы	[2]	
24 (a)	если температура понижается, то выход	1	Принимается
	продукта увеличивается		1
	если давление повышается, то выход	1	ИОА
	продукта увеличивается		
(L)		[2]	He ways
(b)	правильно показана структурная формула метанола		Не принимается
		1	Одинарная связь/
			сигма связь

	между атомами углерода и водорода –		
	ковалентная		
	неполярная/малополярная/слабополярная	1	
		[3]	
	между атомами кислорода и водорода		
	ковалентная полярная связь		
(c)	$CH_3OH + C_2H_5COOH \rightarrow C_2H_5COOCH_3 + H_2O$		
		[1]	
(d)(i)	Любой из следующих:		
	разрушаются почки/цирроз печени		
	повышается кровяное давление		
	нарушается функция мозга/мозговое		
	кровообращение		
	нарушается координация движений	[1]	
	нарушается нервная система		
(d) (ii)	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + CO_2$	[2]	1 УХР
			1баланс

Часть С

25 (a)	- схема показывает последовательность:	1	
	горение жидкости, водосбор, сбор СО2,		
	аспирационная установка. Должен быть		
	один способ с одним входным и выходным		
	отверстием ✓		
	- Коллектор воды: должен собрать воду, но	1	
	не СО2. Например, охлаждённая U-образная		
	трубка, конденсатор с коллектором,		
	подходящий осушитель ✓		
	- Коллектор СО2: подходящий основной	1	
	беспримесный остаток, например, натронная		
	известь (растворы не считаются) ✓	[3]	
(b)	измерить начальную и конечную массы	[1]	
(b)	обоих коллекторов		
(c)	повторить, по меньшей мере, два раза	[1]	
(d)	С6Н14 гексан	[1]	
	Итого	60	